* Premio Speciale Repower per l’Innovazione 2021: vince Jojob, la startup che certifica il risparmio ambientale degli utenti di carpooling

 

 


 


É Jojob ad aggiudicarsi il Premio Speciale Repower 2021 per l’Innovazione: la vittoria è stata annunciata nell’ambito dell’undicesima edizione del Premio per l’Innovazione 2-0-3-1, il riconoscimento più significativo a livello europeo per il mondo dell’innovazione, di cui quest’anno Repower è il partner principale. Il Premio Speciale Repower per l’Innovazione è un riconoscimento espresso in servizi con un percorso di affiancamento e trasferimento di competenze della durata di un anno, di cui la startup vincitrice potrà beneficiare.

Jojob Real Time Carpooling è un servizio innovativo di carpooling per gli spostamenti pendolari lanciato nel 2015 da Bringme Srl Società Benefit, la società fondata nel 2013 a Torino da Gerard Albertengo. Jojob Real Time Carpooling è un’applicazione mobile pensata per chi fa commuting, disponibile gratuitamente per sistemi Android e iOS: ogni utente, dopo essersi registrato, può pianificare i propri tragitti, individuare autisti e/o passeggeri con i quali condividere i viaggi, prenotare passaggi in carpooling e contribuire automaticamente ai costi di viaggio. Attraverso l’applicazione mobile viene certificato il risparmio ambientale, espresso in termini di emissioni di CO2 evitate, dopo ogni tragitto percorso in carpooling: ogni utente potrà quindi quantificare il proprio contributo all’ambiente e beneficiare di riconoscimenti e premialità ad esso collegati.
Jojob è stata scelta tra le sei startup finaliste presentate al Museo ADI Design il 1° dicembre, da una giuria selezionata composta da giornalisti, innovatori e imprenditori. La motivazione del premio è la seguente: “Per la capacità di rispondere ad un crescente bisogno condiviso dagli utenti e dalle aziende e per aver saputo adattarsi in maniera proattiva al mutato scenario di mercato, Repower premia JoJob come startup vincitrice della IV edizione del Premio Speciale Repower all’Innovazione”.

 Fabio Bocchiola, country manager della filiale italiana, ha dichiarato: “Siamo felici di premiare un progetto che ha già avuto modo di mostrare la propria utilità e che ha saputo resistere anche al periodo di pandemia. Repower crede e investe nelle nuove forme di mobilità intelligenti e Jojob rientra alla perfezione in questa visione. Siamo pronti per iniziare un percorso insieme che, sono sicuro, arricchirà tutti.”
Cristiano Seganfreddo, Presidente di 2-0-3-1, ha dichiarato: “Sostenere l’innovazione e le nuove idee è il sistema più potente per produrre l’energia del domani. Creatività, tecnologia, sostenibilità e impatto sono valori verso cui si muovono le nuove imprese italiane. Repower Italia, con il suo premio speciale e il suo sostegno a 2031, aiuta in modo concreto e fattivo la creazione di una nuova Italia.”
Il Premio Speciale per l’Innovazione Repower, giunto alla quarta edizione, ha visto vincere nella prima edizione Userbot, startup che utilizza l’Intelligenza Artificiale per il customer care, nella seconda RiceHouse, il progetto di Biella di Tiziana Monterisi che riutilizza gli scarti del riso per il riutilizzo nell’edilizia e nella terza Remodule, progetto che recupera le celle delle batterie delle auto ibride ed elettriche per riutilizzarle in altre applicazioni. 
Gerard Albertengo, CEO di Jojob: "Vincere il Premio Speciale Repower per l'innovazione non solo ci rende orgogliosi per quanto fino ad oggi costruito ma rappresenta un primo importante riconoscimento alla resilienza dimostrata e al sacrificio sostenuto da tutto il team in questi 20 mesi di pandemia. Ora siamo pronti, anche grazie al sostegno di Repower, a contribuire significativamente allo sviluppo della mobilità sostenibile nel nostro paese".

Per approfondire

Bibliografia

 


Anderson et al., 2010, “Biophysical considerations in forestry for climate protection”, in Review Frontiers in Ecology and the Environment, https://doi.org/10.1890/090179

Badger, Price, 1994, “The Role of Carbonic Anhydrase in Photosynthesis”, in Annual Review of Plant Physiology and Plant Molecular Biology, vol. 45, pp. 369-392.

Burgi et al., 2004, “Driving forces of landscape change – Current and new directions” in Landscape Ecology · January 2004; vol. 19, n.8; pp.857-868; DOI:10.1007/s10980-005-0245-3

Claser, Fazioli, Vecchia, 2014 “Progettare la Sostenibilità. La riflessione, la sfida, la progettazione”, Casa Editrice "Lanuovauniversitaria.it", Padova, pp. 1-293, isbn 9978-88-6292-459-7

Douskova et al., 2009, “Simultaneous flue gas bioremediation and reduction of microalgal biomass production cost”, in Applied Microbiology and Biotechnology, vol. 82, pp. 179–185.

EEA, 2021, Report  No 03/2021, EEA Environmental Statement 2020.

EU – 2021, “Conservation status of habitat types and species: data sets from Article 17”, in Habitats Directive 92/43/EEC, Reporting  2020, published Sep 2021.

Farrell, Führer, Ryan, Andersson, Piussi, 2000, “European forest ecosystems: building the future on the legacy of the past”, in Forest Ecology and Management, vol. 132, n.1, pp.5-20.

Fazioli, 2021, “Obiettivo sostenibilità. Il difficile cammino della transizione energetica”, TAB Ed., Roma, isbn 978-88-9295-130-3

Foley et al., 2005, “Global Consequences of Land Use”, in Science, Vol. 309, n. 5734.

Herzog e Golomb 2004. “Carbon Capture and Storage from Fossil Fuel Use”, in Encyclopedia of Energy, pp. 277-287.

Hill et al. 2006, “Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels”, Research Article in Proceedings of the National Academy of Sciences of the United States, PNAS, July, vol.103, n.30, pp.11206-11210; https://doi.org/10.1073/pnas.0604600103

Knops, Reich, Tilman, 2006,  “Biodiversity and Ecosystem Stability in a Decade-Long Grassland Experiment”, in Nature, June, vol. 441; pp.629-632.

Jansson et al., 2010, “Biomass and structure of planktonic communities along an air temperature gradient in subarctic Sweden”, in  Freshwater Biology, march, vol.55, n. 3.

Jansson, Northern, 2010, “Calcifying cyanobacteria–the potential of biomineralization for carbon capture and storage”, Current Opinion in Biotechnology, June, vol. 21, n.3; pp. 365-71; doi: 10.1016/j.copbio.2010.03.017.

Keffer, Kleinheinz, 2002, “Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor”, Journal of Industrial Microbiology & Biotechnology, vol. 29, pp. 275–280

Lewis, Nocera, 2006, “Powering the planet: Chemical challenges in solar energy utilization”, in Proceedings of the National Academy of Sciences of the United States, PNAS,  November.

Paterson, Bryan, 2012, “Food-Carbon Trade-offs between Agriculture and Reforestation Land Uses under Alternate Market-based Policies”, in Ecology and Society, Sep 2012, Vol. 17, No. 3 (Sep 2012)

Perdan, Azapagic, 2011, “Carbon trading: Current schemes and future developments”, in Energy Policy, october, vol. 39, n. 10, pp. 6040-6054.

Perman, Ma, Common, McGilvray, Maddisonisbn, 2011, “Natural Resource and Environmental Economics”, Person Ed 13: 9780321417534

Richards, Riddle, Stokes, Woo, 2016, “Induced and Natural Epigenetic Variation”, in Cold Spring Harbor Laboratory Press, January.

Robrecht, 2015, “Il cambiamento climatico e le città”, European Environmental Agency pub., sept.

Sanderson et al., 2002, “The Human Footprint and the Last of the Wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not”, in BioScience, October, vol. 52, n. 10, pp. 891–904.

SayRe, 2010,  “Microalgae: The Potential for Carbon Capture”, in BioScience, October, vol. 60, n. 9.

Sedjo, Sohngen, 2012, “Carbon Sequestration in Forests and Soils”, in Annual Review of Resource Economics, vol. 4; pp. 127-144; https://doi.org/10.1146/annurev-resource-083110-115941.

Sedjo, Tian, 2012, “Does Wood Bioenergy Increase Carbon Stocks in Forests?” in Journal of Forestry, September, vol. 110, n. 6, pp. 304–311, https://doi.org/10.5849/jof.11-073

Sitzia, Semenzato, Trentanovi, 2010, “Natural reforestation is changing spatial patterns of rural mountain and hilllandscapes: A global overview”, in Forest Ecology and Management, vol. 259, pp. 1354–136.

Spalding 2008,“Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters”, in Journal of Experimental Botany, May, vol. 59, n. 7, pp. 1463–1473, https://doi.org/10.1093/jxb/erm128.


Vai alle pagine:

Abstract e Global warming...

Verso la biofissazione della CO2

Opportunotà della biofissazione della CO2…

Un'applicazione per le aree densamente popolate: il BioBosco Urbano

Le note

Note

 


[1] In effetti, dai tempi della rivoluzione industriale (ovvero dal 1860, anche perché corrisponde ad una datazione a partire dalla quale sono disponibili dati attendibili) la temperatura media della Terra è aumentata di 0,6°C e, in termini di durata e di ampiezza del fenomeno, il riscaldamento durante il 1900 sembra essere stato il più importante negli ultimi mille anni.

[2] Come enfatizzato e amplificato dai mass-media occidentali, il persistente e intenso impiego di fonti primarie d’origine fossile sono riconosciuti quali fenomeni principalmente responsabili dell’insostenibilità dell’attuale sistema energetico e dello stesso global warming

[3] L'aumento della concentrazione di GHG sta causando drammatici cambiamenti climatici (aumento della temperatura, cambiamenti nella distribuzione, intensità e andamento delle precipitazioni, innalzamento del livello del mare, inondazioni, siccità e aumento dei fenomeni climatici estremi) a causa di noto fenomeno global warming. La temperatura del pianeta è aumentata di 0,85°C dal 1880 al 2012 ed è stato previsto che entro la fine di questo secolo si assisterà a un aumento di 1,4-5,8°C. La concentrazione di CO2, il più importante GHG e il maggior contributore al riscaldamento globale, ha raggiunto livelli formidabili. Corrispondente a un aumento del 32%, da circa 280 ppm a 400 ppm, dalla rivoluzione industriale. Le cause principali sono l'uso irrazionale dei combustibili fossili e il cambiamento nel modello di utilizzo del suolo. Non solo il riscaldamento globale, l'aumento della concentrazione di CO2 nell'atmosfera ha anche portato ad un aumento del 30% dell'acidità degli oceani, che a sua volta sta influenzando negativamente la biodiversità.

[4] L’effetto serra è un fenomeno naturale, determinato dalla capacità dell’atmosfera di trattenere, sotto forma di calore, parte dell’energia che proviene dal Sole; ciò è dovuto alla presenza nell’atmosfera di alcuni gas, detti “gas serra”, che “intrappolano” la radiazione termica che viene emessa dalla superficie terrestre riscaldata dal Sole.

[5] La concentrazione del protossido di azoto è cresciuta moltissimo negli ultimi decenni, passando da 275 ppb del periodo pre-industriale ai 312 ppb del 1994. La maggior parte del protossido di azoto in atmosfera deriva da processi microbiologici. Nei terreni e nelle acque, le maggiori fonti di emissione di N2O sono i processi di nitrificazione e denitrificazione, quest'ultimo è il principale responsabile delle emissioni di N2O in ambienti sotterranei. Si sono osservati anche fenomeni di assorbimento del protossido di azoto da parte degli oceani, ma ad oggi la conoscenza su come il suolo e i sistemi marini fungano da pozzi di assorbimento per questo gas è troppo ridotta per considerare la loro importanza su scala globale

[6] Nel 1987, siglando il Protocollo di Montréal, le nazioni del mondo hanno stretto un accordo per ridurre drasticamente l'uso di questi gas perché considerati lesivi dell'ozono atmosferico. I CFC sono stati in gran parte sostituiti dagli HCFC, meno dannosi per l'ozono ma comunque nocivi per l'effetto serra poiché contribuiscono al riscaldamento globale. Così mentre la concentrazione di CFC diminuisce, quella degli altri gas aumenta. Oltre ad essere molto potenti, questi gas permangono in aria per periodi molto lunghi, fino a 400 anni

[7] E’ opinione condivisa che la CO2 sia il principale gas ad effetto serra, per cui quando si parla di riduzione emissiva si fa sempre riferimento a valori espressi in termini di CO2eq (CO2 equivalente). Attenzione, però, se valutiamo l’indicatore di Global Warming Potential (GWP), non tutti i gas determinano lo stesso effetto serra, come illustra la tabella di seguito riportata. 

GHG

CO2

CH4 fossile

CH4

HFCs

PFC

SF6

N2O

NF3

GWP

1

30

28

4–12.400

6.630–11.100

23.500

265

16.100

Fonte: elaborazione su raccolta dati dell’autore.
Il GWP è una misura relativa di quanto calore intrappola nell’atmosfera una determinata massa di gas afferente al cluster GHG, in confronto al calore intrappolato dalla stessa massa di CO2.

[8] Il biossido di carbonio o anidride carbonica, CO2, è un gas normalmente presente nell’atmosfera che deriva dalla combustione di materiale organico in presenza di ossigeno. La CO2 viene inoltre prodotta da numerosi microrganismi attraverso la fermentazione e la respirazione cellulare. Le piante utilizzano la CO2 durante la fotosintesi, usando sia il carbonio che l’ossigeno per costruire i carboidrati. Inoltre, rilasciando ossigeno nell’atmosfera, e mettendolo a disposizione per la respirazione di organismi eterotrofi, formano a tutti gli effetti un ciclo. Il carbonio delle piante è detto ‘carbonio fissato’. Durante la decomposizione biologica dei tessuti vegetali, che avviene soprattutto in autunno e in inverno, il biossido di carbonio precedentemente utilizzato viene restituito. Si sospetta che la velocità della fotosintesi aumenti all’aumentare del livello di CO2 e della temperatura dell’aria e che la formazione di una massa maggiore di carbonio fissato rappresenti un’importante forma di deposito di questo gas. In effetti, l’aumento della biomassa delle foreste delle zone nordiche temperate potrebbe rappresentare la forma più efficiente di diminuzione ciclica della concentrazione di CO2. Infatti, le immissioni di CO2 collegate alle attività umane rappresentano solo il 4% della totalità del gas prodotto in natura; perciò, piccole variazioni dell’efficienza di fissazione del biossido di carbonio nella biomassa possono avere effetti rilevanti sulla quantità di CO2 residua che si accumula nell’atmosfera.

[9] L’attività di CCS è considerata una linea strategica importantissima nell’ambito della politica energetica europea afferente al Green New Deal, in quanto tecnologia della “transizione verso la decarbonizzazione”, che potrà contribuire a mitigare i cambiamenti climatici permettendo, secondo stime preliminari, la riduzione, entro il 2020, del 20% delle emissioni di gas ad effetto serra, rispetto ai livelli del 1990. La Commissione Europea, infatti, si è posta l’obiettivo di facilitare la realizzazione di impianti termoelettrici dotati di tecnologie di CCS geologico della CO2 emanando la direttiva 2009/31/CE quale nel “Pacchetto Clima – Energia”, con lo scopo di definire un quadro giuridico comune a livello europeo per lo stoccaggio geologico ambientalmente sicuro del biossido di carbonio, ovviamente allocando ingenti risorse per l’incentivazione ed il contributo pubblico in tale direzione. Al di là degli slogan, in questi campi all’ordine del giorno, si potrebbe dire: giusto e razionale

[10] In Europa ad oggi le nazioni che includono CCS nei loro programmi di decarbonizzazione, e quindi più attive nella promozione di CCS sono la Norvegia, Inghilterra e Olanda. Aree densamente industrializzate possono godere di infrastrutture condivise per il trasporto e lo stoccaggio della CO2(CCS clusters). CCS è particolarmente interessante per l’industria siderurgica, petrolifera e del cemento.

[11] CCS è una tecnologia necessaria per raggiungere gli obiettivi che si sono sottoscritti nei noti Accordi di Parigi. In effetti, senza CCS, i costi di aggiustamento alla strategia della transazione aumentano del 140% e la probabilità di stare sotto i 2°C è molto bassa, posto che 140 Gt/CO2 dovranno essere catturate da oggi al 2060 (I.E.A.) e, oggi, sono catturati circa 38 Mt annui

[12] È facile dimostrare che l'energia catturata dal complesso fotosintetico per la raccolta della luce (LHC) è 95% efficiente perché la struttura consente la coerenza quantistica per il trasferimento di energia tra i cromofori contenuti all'interno. La comprensione di tali processi offre molto per i progressi tecnologici di ispirazione biologica

[13] Per secoli molte aree montane e collinari sono state oggetto di deforestazione per creare spazio per l'agricoltura e il pascolo, anche se l'abbandono dell'agricoltura tradizionale di montagna ha prodotto un recupero naturale delle foreste in molte regioni del mondo. Tra i problemi ecologici causati dal rimboschimento naturale, uno di grande interesse è la riduzione degli spazi aperti con conseguente perdita di eterogeneità del paesaggio. Piantumare sic-et-simpliciter in modo non corretto può creare danni enormi agli ecosistemi, alle riserve di acqua, all’agricoltura e financo alle persone. Foreste artificiali (con una sola o con poche specie non autoctone) impoveriscono la biodiversità locale, trasfigurano interi ecosistemi e mettono a rischio le riserve idriche di intere regioni. Infine, piantumazioni massive di alberi in grandi terreni possono innescare addirittura una sorta di conflitto tra gli alberi e l’agricoltura, ovvero fra sostenibilità ambientale e sociale; ancora, piantumare nuovi alberi non deve distogliere l’attenzione da altre priorità come la protezione delle foreste esistenti, la conservazione e il ripristino di altri ecosistemi naturali

[14] Secondo un studio della cinese Nanjing University, questa capacità di assorbimento pare stia rallentando in maniera sensibile in questi anni, rispetto a quanto previsto dai modelli teorici, in ragione del degrado biologico forestale. Secondo l’ultimo studio di Nature Climate Change in Brasile, solo nell’ultimo decennio, la foresta Amazzonica ha rilasciato più CO2 di quanta ne abbia assorbita, emettendone nell’ultimo decennio 16,6 miliardi di tonnellate e assorbendone 13,9.

[15] Una GI è una rete strategicamente pianificata di aree naturali e semi-naturali che fornisce molteplici funzioni, servizi e benefici sulla stessa area spaziale, per migliorare il benessere umano e la qualità della vita nelle aree urbane, anche sfruttando le forze creative, protettive, di approvvigionamento e di adattamento della natura in modo efficiente in termini di costi, lavorando con la natura e non contro di essa

[16] Le microalghe sono microrganismi unicellulari a crescita rapida che sono in grado di dividere le proprie cellule entro 3-4 ore, ma per lo più si dividono ogni 1-2 giorni in condizioni di crescita favorevoli. Attraverso il processo di fotosintesi, la CO2 viene assorbita dalle cellule delle microalghe per supportare la loro crescita convertendo il carbonio in carboidrati e, successivamente, i carboidrati vengono utilizzati per costruire proteine, acidi nucleici e lipidi

[17] Il termine "microalghe" è generalmente utilizzato sia per le alghe blu-verdi procariotiche (cianobatteri) che per le microalghe eucariotiche, comprese le alghe verdi, le alghe rosse e le diatomee. Le microalghe sono ricercate come allettanti biofabbriche per il sequestro di CO2 e la produzione simultanea di biocarburanti rinnovabili, alimenti, mangimi per animali e acquacoltura e altri prodotti a valore aggiunto come cosmetici, nutraceutici, prodotti farmaceutici, biofertilizzanti, sostanze bioattive.

[18] I gas di combustione delle centrali elettriche a combustibili fossili hanno tipicamente elevate concentrazioni di CO2, che vanno dal 10% al 20%, e contengono anche quantità biologicamente significative di ossidi di azoto e zolfo (NOx e SOx). È stato dimostrato che l'iniezione di gas di scarico delle centrali elettriche negli impianti di coltivazione algale aumenta di tre volte la resa della biomassa algale.  E’ emblematicamente importante, a tal riprova, la sperimentazione effettuata a Venezia dalla locale azienda dei servizi ambientali, Veritas SpA, col  posizionamento all’interno di aree vicine alle ciminiere degli impianti di generazione d’energia elettrica e degli stabilimenti di Porto Marghera, cilindri alti all’incirca due metri di microalghe affinchè possano fissare la CO2. La fotosintesi è stata, poi, stimolata attraverso la luce del giorno e quella artificiale.

[19] Il “richiamo indotto” alla naturale fissazione della CO2 è messaggio potente anche nella cruciale e strategica funzione di “diffusione della cultura della sostenibilità”. Ciò è a tal punto importante da costituire un potenziale intangible asset comunicativo e di Green Marketing per molti operatori di attività e servizi focalizzati in aree urbane (fra i quali spiccano local Utilities, ecc…). 
 


Torna alla pagina:
Abstract e Global warming...

Verso la biofissazione della CO2

Opportunotà della biofissazione della CO2…

Un'applicazione per le aree densamente popolate: il BioBosco Urbano