5. Conclusioni

Secondo il rapporto della Commissione Europea “Energy Roadmap 2050”, il gas dovrà giocare un ruolo chiave nella transizione del sistema energetico verso le fonti rinnovabili, di cui rappresenta peraltro il complemento ideale, potendone compensare la discontinuità. Tra i fattori che renderanno tale ruolo sempre più incisivo a livello mondiale, oltre alla combustione molto più pulita rispetto agli altri combustibili e alla versatilità d’impiego, vi è senza dubbio l’enorme disponibilità delle risorse, in particolare di quelle non convenzionali, come lo shale gas, divenuto ormai una realtà nel panorama energetico soprattutto statunitense. Non meno interessanti, tuttavia, appaiono in prospettiva gli idrati di metano, ai quali stanno rivolgendo la loro attenzione ricercatori di diversi Paesi, in primo luogo USA e Giappone, supportati da finanziamenti importanti da parte dei rispettivi governi, in virtù degli enormi quantitativi stimati. Negli USA, l’agenzia scientifica del Governo USGS (US Geological Survey) ha calcolato che, nel solo versante Nord dell’Alaska, vi sarebbero risorse potenzialmente recuperabili per oltre 2.400 miliardi di metri cubi [18], mentre secondo la JOGMEC i depositi di idrati di metano situati sotto l’oceano al largo delle coste giapponesi sarebbero tali da poter coprire la domanda interna di gas per decenni, anche se una tecnologia di estrazione economicamente conveniente non sarà disponibile entro i prossimi dieci anni [17].

Gli idrati di metano sono, comunque, distribuiti diffusamente su larga parte del pianeta e ciò li rende ancora più interessanti, perché il loro sfruttamento consentirebbe di sottrarre il commercio internazionale del gas alle strumentalizzazioni politiche attuate dai Paesi in cui sono concentrate le maggiori riserve di idrocarburi. Come giustamente sostiene qualche autore [09], ne potrebbe derivare un effetto dirompente sul mercato globale dell’energia, rendendo indipendenti Paesi attuali importatori, come il Giappone e l’intera Asia.

Certamente, perché si possa giungere ad una fase di commercializzazione, bisognerà superare, prima ancora delle difficoltà tecniche ed economiche, i non trascurabili rischi ambientali che la loro estrazione comporta, e dunque i tempi non saranno brevissimi, ma l’impulso dato alla ricerca negli ultimi tempi ed il successo delle sperimentazioni citate aprono prospettive interessanti.

Peraltro, proprio in riferimento a quella realizzata nel 2012 dagli USA in Alaska, molti studiosi evidenziano la possibilità, che il metodo di estrazione adottato consente, di stoccare in maniera permanente sotto forma di clatrati l’anidride carbonica proveniente da fonti concentrate, come, ad esempio, le centrali termoelettriche, contribuendo alla riduzione della sua concentrazione nell’atmosfera.

 

4. Lo stato delle ricerche

I rischi sopra richiamati e la complessità tecnica del processo di estrazione rendono al momento problematico lo sfruttamento commerciale del metano contenuto negli idrati, tuttavia diversi Paesi – in primo luogo USA e Giappone, ma anche Canada, India, Cina, Corea del Sud, Norvegia- stanno lavorando per cercare una soluzione che possa ridurre al minimo i pericoli e risultare, al contempo, economicamente sostenibile.

La prima produzione al mondo risale al 1971 e riguarda il campo di Messoyakha, nella Siberia Nord-Occidentale.

Estrazioni sperimentali e di breve durata si sono avute, ad opera di un team internazionale di ricerca, a Mallik, nel Nord-Ovest del Canada, in particolare nel permafrost del delta del fiume McKenzie, dove sono stati scoperti giacimenti di idrati sin dal 1972 e dove sono state effettuate due prove di produzione: la prima, nell’inverno 2001-2002, quando, utilizzando il metodo della stimolazione termica, sono stati ottenuti 500 mc di metano; la seconda, durata sei giorni, nel marzo 2008, quando sono stati estratti 13.000 mc mediante depressurizzazione [13]. 

3. Possibile estrazione del metano dagli idrati e problemi connessi

La considerevole potenzialità dei giacimenti individuati rende sicuramente molto suggestiva l’ipotesi di un’estrazione del metano dagli idrati; tuttavia, la fattibilità e la convenienza di un simile recupero sono al momento ancora da valutare per i problemi tecnici e, soprattutto, ambientali che esso comporta, così che solo da qualche anno sono state avviate delle sperimentazioni sul campo.

Evidentemente per il recupero è necessario provocare la dissociazione degli idrati, in modo da liberare il metano intrappolato nel ghiaccio. Ciò può essere ottenuto tenendo presente il diagramma di fase dell’idrato di metano (figura 3), da cui si desumono le condizioni di temperatura e di pressione (legata ovviamente alla profondità) alle quali esso rimane stabile allo stato solido e oltre le quali, invece, il metano può esistere solo come gas libero [08]. Di conseguenza, i possibili metodi di estrazione si basano sulla modifica delle condizioni originarie, o mediante una stimolazione termica, ossia iniettando negli idrati un liquido o un gas caldo, o una depressurizzazione, praticando cioè dei fori che determinano, appunto, una diminuzione locale della pressione [02] o ancora una stimolazione chimica,mediante introduzione di acqua salata o di altri composti chimici (ad esempio, il metanolo) in grado di cambiare il campo di stabilità del sistema (GargiuloCimenti A. – CimentiE., 2006). Un metodo molto interessante, che sembra aver fornito ottimi risultati nelle sperimentazioni condotte recentemente in collaborazione da Stati Uniti e Giappone, prevede l’iniezione di anidride carbonica [09], la quale va a prendere il posto del metano nel reticolo cristallino.

Va detto, tuttavia, che il processo di dissociazione degli idrati va gestito con estrema prudenza, in quanto un rilascio incontrollato di gas potrebbe avere conseguenze ambientali molto serie e di diverso tipo. In primo luogo, il metano, risalito in superficie, potrebbe passare nell’atmosfera aggravando notevolmente il problema del riscaldamento globale, dal momento che il suo potenziale effetto serra è almeno dieci volte superiore a quello dell’anidride carbonica: anche se esso non rimane a lungo nell’aria, in quanto si degrada in circa un decennio, le preoccupazioni restano poiché si trasforma proprio in CO2. L’aumento di temperatura potrebbe provocare, a sua volta, la dissociazione di altri idrati ed un’ulteriore liberazione di gas, con un effetto a catena.

Il metano, inoltre, come è noto, è infiammabile ed esplosivo e, dunque, potrebbe costituire un serio pericolo per gli stessi impianti di estrazione. Si ipotizza, a tale riguardo, che una delle cause dell’esplosione ed incendio della piattaforma petrolifera offshore Deepwater Horizon, avvenuta nel 2010 nel Golfo del Messico[1], sia stata proprio una violenta fuoriuscita di gas dovuta all’attività di trivellazione, che avrebbe provocato il riscaldamento di idrati presenti nell’area.

Un rischio ancora più grave legato all’estrazione di metano è l’instabilità dei versanti sottomarini che potrebbe derivare dalla diminuzione della resistenza meccanica dei sedimenti contenenti gli idrati, i quali potrebbero quindi scivolare lungo i margini continentali. Tali smottamenti, oltre ad avere effetti dirompenti sulle coste, potrebbero anche generare un maremoto con onde alte decine di metri: secondo gli studiosi, sarebbe stata la liberazione di metano dai giacimenti del Mare del Nord, in seguito alla deglaciazione, a provocare circa 8.000 anni fa l’enorme frana sottomarina denominata Storegga[2], che produsse un catastrofico tsunami al largo delle coste norvegesi e scozzesi [11].

Infine, il rilascio incontrollato di notevoli quantità di metano potrebbe produrre la formazione di enormi bolle di gas (blow out) che, risalendo verso la superficie del mare, determinerebbero una diminuzione della densità dell’acqua, facendo venir meno la spinta di galleggiamento e causando così l’affondamento di una eventuale imbarcazione in transito. A tale riguardo, è stato ipotizzato che sia questo fenomeno all’origine dell’inabissamento di navi nel “triangolo delle Bermuda”, un’area in cui la concentrazione di idrati nel fondale è fra le più alte del pianeta [12].

 

 


[1] L’evento provocò 11 morti e 17 feriti ed un vero e proprio disastro ambientale, con lo sversamento in mare di circa 5 milioni di barili di greggio [10].

[2]Storegga” è un termine della vecchia lingua norvegese che significa “grande bordo”. Indica in questo caso un’enorme colata di detriti e fango, ampia 2.500kmq, che, partita dal margine della piattaforma continentale norvegese, si mosse per circa 800 Km, viaggiando verso gli abissi in direzione Nord-Ovest, ad una velocità di 20-25 m/s [11].